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Bandstructure Effects in Multiwall Carbon Nanotubes
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We report conductance measurements on multiwall carbon nanotubes in a perpendicular magnetic
field. A gate electrode with large capacitance is used to considerably vary the nanotube Fermi level.
This enables us to search for signatures of the unique electronic band structure of the nanotubes in
the regime of diffusive quantum transport. We find an unusual quenching of the magnetoconductance
and the zero bias anomaly in the differential conductance at certain gate voltages, which can be
linked to the onset of quasi-one-dimensional subbands.

PACS numbers:

Quantum transport in multiwall carbon nanotubes has
been intensely studied in recent years [1, 2]. Despite some
indications of ballistic transport even at room tempera-
ture [3, 4], the majority of experiments revealed typi-
cal signatures of diffusive quantum transport in a mag-
netic field B such as weak localization (WL), universal
conductance fluctuations (UCF) and the h/2e-periodic
Altshuler-Aronov-Spivak (AAS) oscillations [2, 5, 6, 7].
These phenomena are caused by the Aharonov-Bohm
phase, either by coherent backscattering of pairs of time-
reversed diffusion paths (WL and AAS) or by interference
of different paths (UCF). In addition, zero bias anomalies
caused by electron-electron interactions in the differen-
tial conductance have been observed [8]. In those experi-
ments, the multiwall tubes seemed to behave as ordinary
metallic quantum wires. On the other hand, bandstruc-
ture calculations for singlewall nanotubes predict strictly
one-dimensional transport channels, which give rise to
van Hove singularities in the density of states[9]. Exper-
imental evidence for this has been obtained mainly by
electron tunneling spectroscopy on single wall nanotubes
[10]. In this picture of strictly one-dimensional trans-
port a quasiclassical trajectory cannot enclose magnetic
flux and no low-field magnetoconductance is expected.
Hence, the question arises how the specific band structure
is reflected in the conductance as well as in its quantum
corrections and how those on first glance contradictory
approaches can be merged into a consistent picture of
electronic transport.
In this experiment, we use a strongly coupled gate, which
is efficient enough to shift the Fermi level through several
quasi-onedimensional subbands. At certain gate volt-
ages, which can be associated with the bottoms of the
subbands, we observe a strong suppression of both the
magnetoconductance and the differential conductance.

The samples were produced on top of thermally oxi-
dized Silicon wafers. First, Aluminium strips of 10 µm
width and 40 nm thickness were evaporated. Exposure
to air provides an insulating native oxide layer of a few
nm thickness. These strips serve as a backgate for the
individual nanotubes, which are deposited from a chlo-
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FIG. 1: (A) SEM image of a typical sample: individual multi-
wall nanotubes are deposited on a prestructured Al gate elec-
trode and contacted by four Au fingers, which are deposited
on top of the tube. The electrode spacing is 300 nm. For the
measurements, only the two inner electrodes are used. (B)
Room temperature conductance of sample A as a function of
gate voltage in units of the conductance quantum 2e2/h. The
estimated position of the charge neutrality point corresponds
to the minimum of conductance and is indicated by a grey
line. (C) Same as in Fig. 1B, but for 10 K, 1 K and 30 mK
(top to bottom). For the 10K curve, both the positions of the
charge neutrality point (grey line) and the regions of quenched
magnetoconductance (black lines) as observed in Fig. 2 are
indicated.

roform suspension in the next step. Electric contacts are
defined by electron beam lithography. After application
of an oxygen plasma, 80 nm of Gold are deposited. In
this way we achieve typical resistances between 10 kΩ
and 30 kΩ at 4.2 K. The samples were operated by a low
frequency ac bias voltage and application of a dc gate
voltage UGate to the Aluminium layer. Up to gate volt-
ages of 3 V no leakage current between the gate and the
tube was observed (ILeak < 100 fA). Typical breakdown
voltages of the gate oxide were 3-4 V. Two-terminal re-
sistance measurements were carried out for two samples,
A and B. The lengths of the samples are 5 µm and 2 µm
and their diameters are 19 nm and 14 nm, respectively.
A scanning electron micrograph of a typical sample is
presented in Fig. 1A.
In order to characterize the dependence of the conduc-
tance of sample A on UGate, a small ac bias voltage of
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2 µV ≪ kBT was applied and the current was mea-
sured at several temperatures T (Fig. 1B,C). Fig. 1B
shows the conductance G as a function of gate voltage
at 300 K. The corresponding curves for 10 K, 1 K and
30 mK are presented in Fig. 1C. The conductance at
room temperature exhibits a shallow minimum located
at UGate ≈ −0.2 V. When the Fermi level is tuned away
from the charge neutrality point, more and more sub-
bands can contribute to the transport and an increase of
the conductance is expected. Thus we attribute the posi-
tion of the conductance minimum to the charge neutrality
point, where bands with positive energy are unoccupied
while those with negative energies are completely filled
[11]. This reveals the high efficiency of the gate as well
as an intrinsic n-doping of the tube. The location of the
minimum varied from sample to sample. We observed
p- as well as n-doping at UGate = 0 V in several samples.
The G(UGate) curves in Fig. 1C show an increasing am-
plitude of the conductance fluctuations as the tempera-
ture is lowered, while the average conductance decreases.
This can be interpreted as a gradual transition from a
coexistence of band structure effects, UCFs and charging
effects at 10 K and 1 K to the dominance of Coulomb
blockade at 30 mK. In contrast to experiments on clean
single wall nanotubes, no periodic Coulomb oscillations
are found. Instead, irregular peaks in conductance oc-
cur. It is likely that disorder induces a nonuniform series
of strongly coupled quantum dots and that transport is
governed by higher order tunneling processes [12].
Next, conductance traces G(UGate) were recorded at sev-
eral temperatures and in magnetic fields perpendicular
to the tube axis. The result at a temperature of 10 K is
displayed as a color plot in Fig. 2A. We have checked for
several gate voltages that G(B) is symmetric with respect
to magnetic field reversal as required in a two point con-
figuration (not shown). In addition, most of the curves
show a conductance minimum at zero magnetic field. A
closer look at the data reveals that both the amplitude
and the width of the conductance dip vary strongly with
gate voltage. In order to make this variation more visi-
ble, we subtracted the curve at zero magnetic field (see
Fig. 1C) from all gate traces at finite fields. The devi-
ation from the zero-field conductance is presented as a
color plot in Fig. 2B. The most striking observation is
that the magnetoconductance (MC) disappears at certain
gate voltages U∗, as indicated by arrows. These voltages
U∗ are grouped symmetrically around the conductance
minimum at UGate ≈ −0.2 V in Fig. 1B, which we have
assigned to the charge neutrality point. The position of
the latter, as well as the gate voltages of MC quenches
have been indicated also in the linear response conduc-
tance curve (Fig 1C) by red and black vertical lines, re-
spectively. The latter always coincide with conductance
maxima. These observations lead us to the conjecture
that the quenched MC may occur at the onset of sub-
bands of the outermost nanotube shell, which is believed
to carry the major part of the current at low tempera-
tures [7].

To confirm this idea, we applied a simple bandstructure
model. The black line in Fig. 3A shows the density
of states of a single wall (140,140) armchair nanotube,
which matches to the diameter of sample A (19 nm).
Typical van Hove singularities arise at the energies, where
the subband bottoms are located [9]. By integration over
energy one obtains the number ∆N of excess electrons
on the tube, plotted as a red line in Fig. 3A. In this way,
we can determine the number ∆N∗ of electrons at the
onset of the nanotube subbands. If we assume as usual a
capacitative coupling between the gate and the tube, ∆N
can be converted into a gate voltage via CUGate = e∆N .
In Fig. 3B the measured gate voltages U∗ of quenched
MC are plotted versus the calculated ∆N∗ for both sam-
ples. Both data sets fit very well into straight lines,
which demonstrates that most of the positions U∗ of the
quenched MC agree very well with the expected subband
onsets. In addition, the gate capacitances C are pro-
vided by the slope of U∗ vs. ∆N∗. The capacitances
per length are nearly identical, i.e. 120 aF/µm and 129
aF/µm for samples A and B, respectively. These val-
ues agree within a factor of 2 with simple geometrical
estimates of C, indicating the consistency of the inter-
pretation. From the capacitance C and the calculated
dependence of the number of electrons N on energy one
can convert the gate voltage into an equivalent Fermi en-
ergy. This energy scale is shown in Fig. 2F.
The typical dip in the MC at B = 0 in Fig. 2A has been
observed earlier and can be explained in terms of weak
localization in absence of spin-orbit scattering [2, 6, 13].
The weak localization correction ∆GWL to conductance
provides information on the phase coherence length Lϕ

of the electrons. With W being the measured diame-
ter and L = 300 nm the electrode spacing of the nan-
otube, ∆GWL is given in the quasi-one-dimensional case
(Lϕ > W ) by ∆GWL = −(e2/π~L)·(L−2

ϕ +W 2/3ℓ4
m)−1/2,

where ℓm = (~/eB)1/2 is the magnetic length. In Fig.
2B each row displays a dip around zero magnetic field,
where both the amplitude and the width of the dip vary
strongly with gate voltage. We have used the weak lo-
calization expression above to fit the low field MC with
Lϕ and G(B = 0) as free parameters. The conductance
∆GWL as calculated using the fit parameters is plotted in
Fig. 2C. We find that conductance traces are reproduced
very well by the fit for fields up to 2 T. For higher fields,
deviations occur, most probably due to residual univer-
sal conductance fluctuations. In this way we obtain an
energy dependent phase coherence length Lϕ(EF), which
is plotted in Fig. 2D. Lϕ varies from 20 to 60 nm and
displays pronounced minima which correspond to the re-
gions of nearly flat MC in Fig. 2B. From the preceding
discussion, we can say that weak localization seems to be
suppressed at the onset of nanotube subbands.
In order to confirm the validity of our interpretation in
terms of weak localization, we have studied the temper-
ature dependence of the phase coherence length. As the
dominating dephasing mechanism, quasielastic electron-
electron scattering has been identified [2, 6, 14]. De-
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FIG. 2: (A) Grey scaled conductance G of sample A as a function of gate voltage U and perpendicular magnetic field at a
temperature of 10 K. (B) Deviation of G from the zero-field conductance G(U, B)−G(U, 0). White arrows indicate the regions
of quenched magnetoconductance. (C) Reproduction of the magnetoconductance by 1D weak localization fits. The parameters
Lϕ and G(B = 0) are used as obtained by fitting the data on Fig. 2A. (D) Phase coherence length Lϕ vs. gate voltage as
obtained from the fit. The positions of the charge neutrality point (grey line) and the regions of quenched magnetoconductance
(black lines) are indicated. (E) Differential conductance of sample A as a function of gate voltage and dc bias voltage VBias at
T=10 K. (F) Exponent α vs. gate voltage as obtained from fitting a power law V α to the differential conductance in the range
eV ≫ kBT . Right: scale conversion of the gate voltage into a (nonlinear) energy scale using the gate capacitance as obtained
from Fig. 3B.

phasing by electron-phonon scattering is negligible since
the corresponding mean free path exceeds 1 µm even at
300 K [15, 16]. The theory by Altshuler, Aronov and
Khmelnitzky [17] predicts Lϕ = (GDL~

2/2e2kBT )1/3,
where G is the conductance, D is the diffusion con-
stant, L is the length of the tube. The dominance of
electron-electron-scattering can be confirmed by study-
ing the temperature dependence of Lϕ. Therefore, the
MC measurements have been repeated for temperatures
ranging from 1 K to 60 K. In order to eliminate the con-
tribution of the universal conductance fluctuations, the
MC curves have been averaged over all gate voltages. The
result is plotted in Fig. 4A. For the comparison of the
curves with theory, one has to bear in mind that the av-
erage runs also on curves with suppressed MC. Hence, for
the fit an averaged weak localization contribution of the
form ∆G∗

WL
= A ·∆GWL with a scaling factor 0 < A < 1

has been taken into account. The fitted curves are in-
cluded in Fig. 4A. They match the data very well, up to
magnetic fields of 7 T. In Fig. 4B the resulting Lϕ(T ) are
presented. The contribution of the universal conductance
fluctuations is completely suppressed by ensemble aver-
aging. The temperature dependence matches a power
law with exponent -0.31, which is close to the theoretical
prediction of -1/3.
Another quantum correction to the conductance is in-

duced by the electron-electron-interaction and reduces
the density of states near the Fermi energy [18]. This
leads to zero bias anomalies in the differential conduc-
tance dI/dV [8], from which information on the strength
of the electron-electron-interaction can be extracted. In
the case of tunneling into an interacting electron system
with an ohmic environment, the differential conductance
dI/dV is given by a power law, i.e. dI/dV ∝ V α for
eV ≫ kBT , where the exponent α depends both on the
interaction strength and the sample geometry [19]. In
order to obtain complementary information, we have ex-
amined the dependence of the ZBA on the gate voltage
UGate. The differential conductance has been measured
as a function of UGate and VBias. The result is presented
in Fig. 2E. For each gate voltage, the conductance shows
a dip at zero bias. The zero bias anomaly has a strongly
varying width with gate voltage and nearly vanishes at
the same gate voltages UGate = U∗ as the magnetocon-
ductance. For each value of the gate voltage, a power law
fit for the bias voltage dependence of the differential con-
ductance has been performed. The resulting exponent
α(UGate) is plotted in Fig. 2F. α varies between 0.03 and
0.3 and shows pronounced minima at the gate voltages
U∗.
We thus observe experimentally a strong correlation be-
tween the single particle interference effects (expressed by
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FIG. 3: (A) Calculated π-orbital density of states (DOS) for
a (140,140) armchair nanotube of diameter of 19 nm (grey)
as a function of energy. Number of excess electrons N(E)
(black) as obtained from the integration of the DOS from
0 to E. The subband spacing for this diameter is 66 meV.
(B) Measured gate voltage values U∗ of nanotube subband
onsets vs. calculated numbers of electrons ∆N∗ at subband
onsets for sample A (circles, diameter 19 nm) and B (triangles,
diameter 14 nm). The lines correspond to linear fits of the
data. The slopes of the lines correspond to gate capacitances
per length of 120 aF/µm and 129 aF/µm for sample A and
B, respectively.

Lϕ) and the interaction effects (expressed by α). Both
are strongly reduced at certain positions of the Fermi
level, which match well the positions of the van Hove
singularities estimated from simple bandstructure mod-
els. What is the effect of the bandstructure? Numerical
calculations by Triozon et al. [20] indicate that the diffu-
sion coefficient D is not a constant as a function of EF ,
but displays pronounced minima at the onset of new sub-
bands. At these points strong scattering occurs, resulting
from the opening of a highly efficient scattering channel.
This has a direct effect on Lϕ =

√

D(EF )τϕ. Of course,
τϕ may also be affected.
Can the energy dependence of D(EF) also explain the
suppression of the interaction effects? This question has
already been raised by Kanda et al. [21], who also ob-
served a pronounced gate modulation of α. For weak
electron-electron-interaction the theory of Ref. [18] pre-
dicts α ∝ 1/ℓel, where ℓel is the elastic mean free path.
This is definitely incompatible with the observed suppres-
sion of α at Fermi levels where diffusion is slow. The ob-
served strong modulations of Lϕ and α are accompanied
by a rather weak modulation of the zero bias conductance
at 10 K (see Fig. 1B). One may thus ask, whether the
assumption of weak interactions is valid. Taking the sim-
ple Drude formula σ = e2N(EF)D(EF) as an orientation,
this can be explained by a partial compensation of the
variation of N and D with EF. However, a quantitative

explanation of the observed interplay between bandstruc-
ture effects and quantum corrections to the conductance
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FIG. 4: (A) Averaged magnetoconductance of sample A (cir-
cles) at temperatures of 60 K, 10 K, 3 K and 1K (top to bot-
tom) and fits of 1D weak localization behavior (lines). (B)
Double-logarithmic plot of the temperature dependence of the
phase coherence length Lϕ as obtained from the weak local-
ization fit (black dots). The line corresponds to a power law
fit with an exponent -0.31.

requires a realistic model calculation for a thick, e.g.,
(140,140) nanotube including disorder and interaction ef-
fects. The simple model of strictly one-dimensional con-
ductance channels is obviously incompatible with the ob-
served weak-localization-like magnetoconductance close
to the charge neutrality point. The disorder must be
strong enough to mix the channels without completely
smearing the density of states.
In conclusion, our electronic transport measurements on
multiwall carbon nanotubes reveal an interplay of band-
structure effects originating from the geometry of the
tube and quantum interference induced by disorder. The
results demonstrate the necessity of a systematic theo-
retical approach which can account both for disorder and
geometrical effects on the same level.
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